SECTION 9

SUMMARY OF PROPOSED PERMIT LIMITS

This section presents the current permit limits, historical performance data, technology-based permit limits, and water quality-based effluent limits developed earlier in this report. The most representative and valid permit limits are selected and presented as proposed permit limits. These limits are then checked to verify compliance with Indiana Water Quality Standards (IWQS) and to ensure an adequate margin of safety for each limit. Following these checks, final proposed permit limits are presented.

EXISTING PERMIT LIMITS VERSUS TECHNOLOGY-BASED LIMITS

The existing permit limits, historical performance data, and the BPT/BAT/BCT permit limits derived in Section 5.0 are summarized in Tables 9-1 and 9-2. Monthly average values are presented in Table 9-1 and daily maximum values in Table 9-2. The data in these tables indicate:

- 1) Technology-based permit limits are applicable to the Outfall 001 effluent;
- 2) Historical performance is better than calculated BPT/BAT/BCT permit limits; and,
- 3) Existing permit limits are more stringent than calculated BPT/BAT/BCT permit limits.

PROPOSED PERMIT LIMITS

The existing permit limits are also presented with calculated WQBELs in Tables 9-3 and 9-4. Monthly average values are presented in Table 9-3 and daily maximum values in Table 9-4. The footnotes for these tables explain the basis for selection of the most representative and valid permit limits.

VERIFICATION OF NON-WQBEL VALUES

Four parameters in Tables 9-3 and 9-4 have permit load limits where: i) the limits were determined by a method other than the WQBEL process, and ii) IWQS numeric criteria exist for these parameters. The parameters are total chromium, hexavalent chromium, ammonia as N, and phenolics. For these parameters the proposed permit limits were derived based upon current permit limits and the WQBEL process was not a factor.

In order to verify that IWQS criteria are achieved, the WQBEL process, described in Section 7.0, was performed for these parameters. The results of this process are presented in Table 9-5. Only the WQBEL values for phenolics exceeded the proposed permit limits, therefore, the phenolics limit in Tables 9-3 and 9-4 were replaced by those in Table 9-5.

MARGINS OF SAFETY

For the revised set of proposed permit limits, it is possible to calculate a margin of safety for these limits over a limit calculated by any of the other methods for developing limits. For parameters with numeric limits, margins of safety are presented in Tables 9-6 and 9-7 for monthly average and daily maximum conditions, respectively. Margins of safety for monthly average limits range from 21 to 74 percent, and for daily maximum limits, the range is 21 to 68 percent. The minimum margin of safety for a WQBEL is 42 percent for the monthly average ammonia as N load limit.

FINAL PROPOSED PERMIT LIMITS

For each parameter presented in this section, the most representative and valid limit is proposed as a permit limit in Table 9-8. A chronic bioassay monitoring requirement is

TABLE 8-1. SUMMARY OF TOTAL TO DISSOLVED METAL RATIOS FOR THE OUTFALL 001 EFFLUENT (a)

METAL	AVERAGE TOTAL TO DISSOLVED RATIO
Aluminum Arsenic Barium Boron Copper Iron Lead Magnesium Molybdenum Manganese Selenium Zinc	2.4 1.1 1.0 1.0 4.0 (b) 6.5 6.5 0.9 1.1 1.0 1.2 4.9

Notes:

- (a) From footnote C to Form 2C of the Permit Application.
- (b) The majority of total copper analyses were less than the analytical detection limit, therefore, those results were not included in the average total to dissolved ratio presented here.

• . • · - focuses on the correlation among the soluble and total recoverable metals in determining the bioavailability of the metals.

During the course of effluent characterization sampling in spring 1994, Amoco studied the bioavailability of metals in the Outfall 001 effluent. Analytical data were collected on the fraction of dissolved, or soluble, metals present in the WWTP effluent. For each sampling event, total and dissolved metals analyses were performed and a total to dissolved metals ratio calculated. Using this data, and in accordance with USEPA and IDEM procedures, a representative average total to dissolved metal ratio was calculated for each metal as shown in Table 8-1. A summary report of the total versus dissolved ratio study is included in Volume I as Footnote C to Form 2C, Section V. An effluent limitation derived from a numeric metal criterion, which is expressed as total recoverable in a permit, can be adjusted based on this ratio (327 IAC 5-2-11.1 (d)).

Based upon the results of the projected effluent quality determination in Section 6.0, there is no reasonable potential for any metal to exceed a receiving water criterion. Thus, the translation of a wasteload allocation for a metal into a permit limit, allowing for bioavailability, is not needed. Nonetheless, the information presented herein is important because it demonstrates that most of the metal constituents in Amoco's effluent are not bioavailable.

SECTION 8

METALS RATIO EFFECT

While Amoco believes that no WQBELs are needed for metals, this discussion is provided as background information.

The Water Quality Criteria for metals presented in Table 1 of 327 IAC 2-1-6 are expressed in terms of the acid-soluble fraction to reflect the form of the metals used to derive the published USEPA ambient water quality criteria. Aquatic metals criteria were derived from laboratory toxicity (bioassay) tests using the acid-soluble or bioavailable form of the metals, e.g. water-soluble metal salts.

A reliable acid-soluble analytical method has not been developed by USEPA. In the absence of an analytical method to determine the acid-soluble fraction of a metal, the IWQS criteria in 327 IAC 2-1-6 Table 1 are enforced as total recoverable metals in NPDES permits. Total recoverable analyses, however, do not reflect the acid-soluble or bioavailable form of a metal.

To establish effluent limitations based on Table 1 metals criteria, 327 IAC 5-2-11.1(d) (2) allows the use of the ratio of the soluble fraction of the metal to the total recoverable fraction of the metal in the effluent. This ratio is used to adjust numeric water quality-based effluent limitations to the permit-required total recoverable limit.

IDEM draft guidance presents a procedure to determine the ratio of the soluble fraction to total recoverable fraction of the metal in discharge ("General Guidance to Supplement 327 IAC 2-1-8.8: Variances from a State Water Quality Standard," February 11, 1993, OWM, IDEM"). In drafting the procedure, IDEM cites the May 1992 "Interim Guidance on Interpretation and Implementation of Aquatic Life Criteria for Metals," (OST, USEPA) which

· · · ·

·
•
·
The state of the s
The second secon

TABLE 7-3. MIXING ZONE WASTELOAD ALLOCATION (a)

			 1					
တ္	LOAD (Ib/day)	MONTHLY AVERAGE		107,892	133	125,247	783,068	2,275
POSSIBLE PERMIT LIMITS	LOAD (DAILY MAXIMUM	(1.5)	250,476	309	290,766	1,817,916	5,281
POSSIBLE P	CONCENTRATION	MONTHLY AVERAGE	6	575	710	299	4,173	12.1
	CONCEN	DAILY MAXIMUM	2	1,335	1,647	1,550	9,688	28.1
	CHRONIC	AVERAGE (7)		574.97	709.5	667.5	4,173.0	12.1
ONE WASTELOAD ALLOCATION	CHRONIC	MAXIMUM (6)		1,334.8	1,647.2	1,549.5	9,687.8	28.1
STELOAD A	CHRONIC	(5)		814.4	1,005.0	945.4	5,910.8	17.2
MIXING ZONE WA	BACKGROUND CONC.	3		-	30	25	170	0.01
	4-DAY CCC	STANDARD (3)		21.30	42.50	36.80	243.60	0.23
CONC.	•	8		mg/L	ng/L	mg/L	mg/L	mg/L
PARAMETER		ε		CHLORIDES	PHOSPHORUS	SULFATES	TDS	AMMONIA (c)

NOTES:

(a) ZDIM Dispersion =

54 :1 71 :1

TMZ Dispersion =

22.5 MGD (IDEM WLA, September 1992)

The summer 4-day CCC standard is presented since summer is the limiting season. (b) WLA Flow = (c) The summer

Column (1): Parameters where projected effluent quality indicate that a WQBEL is needed.

Column (2): Units for each parameter.

Column (3): 4-day CCC standards for 6j parameters = Lake Michigan monthly average * 1.416 (as per IDEM WLA). For ammonia, 4-day CCC

standard is equivalent to the Lake Michigan monthly average (as per IDEM OWM-1).

Column (4): Background concentration are 1992 IDEM WLA values except for phosphorous which is based on USEPA STORET data (1985 to 1992) for the Whiting Intake.

Column (5): Chronic WLA = CCC * (TMZ Dispersion + 1) - BG * (TMZ Dispersion)

Column (6): Chronic daily maximum = chronic WLA *

0.706 Column (7): Chronic monthly average = chronic WLA *

Columns (8) and (9): Concentration permit limits are equal to the chronic daily and monthly average values since there are no applicable acute values.

Columns (10) and (11): Load permit limits = concentration * WLA flow * 8.34

·					
				. •	
٠.					
		·			
	•				
			* · •		
			•		
			•		
•					

TABLE 7-2. WHITING INTAKE CHLORIDE MONITORING DATA SUMMARY (1966-1992)(a)

YEAR	COUNT	AVERAGE (mg/L)	C.V. (c)
1966	26	10.1	0.42
1967		No Data	No Data
1968		No Data	No Data
1969		No Data	No Data
1970	22	9.2	0.18
1971	3	11.7	0.13
1972		No Data	No Data
1973	13	11.5	0.15
1974	12	11.5	0.19
1975	12	12.6	0.57
1976	11	10.7	0.15
1977	11	11.5	0.13
1978	11	14.5	0.11
1979	11	10.7	0.30
1980	11	10.3	0.17
1981	11	11.2	0.24
1982	11	11.6	0.14
1983	10	12.1	0.15
1984	12	11.0	0.25
1985	12	11.2 (b)	0.18
1986	12	11.1	0.08
1987	11	11.3	0.18
1988	13	11.8	0.13
1989	12	12.0	0.28
1990	11	11.5	0.13
1991	11	12.0	0.13
1992	8	12.8	0.14

NOTES:

(a) Referenceş

1966 – 1968 East Chicago and Hammond data was obtained from the document Pollution of the Interstate Waters of the Grand Calumet River, Little Calumet River, Calumet River, Wolf Lake, Lake Michigan and their tributaries. Progress evaluation meeting held at Chicago, Illinois on March 15, 1967. Volume 1." and the document Pollution of the Interstate Waters of the Grand Calumet River, Little Calumet River, Calumet River, Wolf Lake, Lake Michigan and their Tributaries, Illinois—Indiana. Proceedings of Conference, Session (2nd) Held at Chicago, Illinois, on December 11–12, 1968. Volume 1." Both documents by the Federal Water Pollution Control Administration — Washington, D.C. — 1967 and December 12, 1968 respectively.

The remaining data was obtained from the United States Geological Survey (USGS) and US EPA STORET Database.

- (b) A data point which was much higher than this value appeared in the data for this year. This data point was obviously off by a factor of 10 (e.g., a decimal point data entry error) and has been corrected.
- (c) C.V. = Coefficient of Variation = (standard deviation/average).

. •

TABLE 7-1. LISTING OF APPLICABLE NUMERIC CRITERIA

PARAMETER	UNITS	AAC (a,b)))	CCC (4-Day Average) (a,b)	1ge) (a,b)	LAKE MIC	LAKE MICHIGAN STANDARDS (¢)	(RDS (c)	AVERAGE BACKGROUND
			Outside of N	utside of Mixing Zone	Point of Water Intake	Monthly Average	4-day CCC (e)	Daily Maximum	CONCENTRATION (d)
			Aquatic Life (CAC)	Human Health	Human Health			·	
Chlorides	mg/L	98	230			15			
Sulfates	mg/L		250 (f)			28 8			
Total Phosphorous	mg/L		750 ⊕			172	243.6	800	170.0 (K)
Ammonia as N (summer) (h.i.j)	mg/L					0.23	<u> </u>		

NOTES:

(a) 327 IAC 2-1-6 Table 1, unless otherwise noted.

CCC -- Continuous Criterion Concentration (b) AAC - Acute Aquatic Criterion

CAC - Chronic Aquatic Criterion

327 IAC 2-1-6().

(c) 327 IAC 2-1-6(j).(d) Assimilative capacity is determined by comparing the 4-day CCC concentration

to average background concentration. If the average background concentration is less than the $4-\mathrm{day}$ CCC then assimilative capcity is available.

(e) 4-day CCC standard for Lake Michigan standards = Lake Michigan monthly avergae * 1.416 (as per IDEM WLA).

(i) Limit included in notes following 327 IAC 2-1-6 Table 1.
 (g) Filtrable or dissolved solids.
 (h) Monthly average unoinized ammonia standard is converted to total ammonia as N at given pH and temperature conditions.

Daily maximum concentration equals twice the monthly average concentrations as per IDEM OWM-1.

At pH 8.2 and 22.9°C for July through September. See note (f).

(i) At pH 8.2 and 22.9°C for July through September. See note (f).
 (j) Summer standard shown since summer is the most limiting season.
 (k) Source is the "Wasteload Allocation of Grand Calumet River – Indiana Harbor Ship Canal", IDEM, September 1992.
 (l) USEPA STORET database 1985–92.

٠ . .

appropriate to use this data to establish compliance limits since historical performance data should be used.

The Form 2C data for non-DMR parameters should be used in the projection of effluent quality and determining the need for a WQBEL. The projected effluent quality procedure in Section 6 can be used to estimate maximum effluent concentrations for comparison to acute and chronic receiving water impact limits, but the procedure would be misapplied if used to establish permit compliance limits. The PEQ procedure is not designed to establish compliance limits. The factors used in the PEQ calculations cannot fully compensate for limited data on effluent variability.

WHOLE EFFLUENT TOXICITY

The projected effluent quality process in Section 6.0 indicated that a WQBEL for chronic toxicity was not needed. However, a WQBEL is proposed based upon Section 3.3.3 of the USEPA March 1991 TSD:

"EPA recommends that a discharger conduct chronic toxicity testing if the dilution of the effluent falls below 100:1 at the edge of the mixing zone."

This WQBEL will be a chronic bioassay test for monitoring purposes only.

MIXING ZONES IN THE WQBEL PROCESS

The discussion of projected effluent quality in Section 6 noted that the mixing zone dispersion ratios in the WQBEL process are obtained from a universal mixing zone based upon the site-specific hydrodynamics of the new Outfall 001 discharge. One set of ZDIM and TMZ dispersion ratios are therefore used to develop the limits in Table 7-3. These limits were calculated independent of effluent characterization data. Rather the limits were based on the IWQS which, by definition, are protective of the designated use of the receiving water. For some parameters, applying the WQBEL process can result in limits higher than existing effluent levels because the WQBEL process and effluent characterization data are not related.

As required by the NPDES Permit Application Form 2C, the characterization data for the Outfall 001 effluent is representative of normal refinery production, normal wastewater treatment, and representative and valid sampling conditions. However this data, in particular for parameters not reported in the monthly Discharge Monitoring Reports (DMRs), is not sufficient to adequately characterize the variability of the effluent quality. It is therefore not

EXAMPLE OF WQBEL DEVELOPMENT

To establish WQBELs for chlorides the Lake Michigan 6(j) monthly average limit of 15 mg/L was converted to a 4-day CCC using Equation 7-2:

4-day CCC =
$$15 \text{ mg/L} \times 1.416$$

= 21.3 mg/L

The background chlorides concentration in Lake Michigan, as reported in the IDEM September 1992 WLA, is 11 mg/L. Using a TMZ dispersion of 77:1, the chronic WLA concentration values were calculated using Equation 7-3:

Chronic WLA =
$$(21.3 \times 78) - (11 \times 77)$$

= 814.4 mg/L

Monthly average and daily maximum permit limits were then calculated using Equations 7-5 and 7-6:

 $= 574.97 \, \text{mg/L}$

The monthly average and daily maximum LTA concentrations are the WQBELs for quality or concentration. WQBELs for quantity or load are calculated as follows:

Daily Maximum Load =
$$1,334.8 \text{ mg/L } \times 22.5 \text{ mgd } \times 8.34$$

= 250,476 lbs/d

= 107,892 lbs/d

Chronic WLA =
$$(4 \text{ Day CCC} \times 78)$$
 - $(Background \times 77)$ Eq. 7-3

Acute WLA = $(AAC \times 55)$ - $(Background \times 54)$ Eq. 7-4

Acute and chronic daily maximum and monthly average concentrations were determined from procedures given in the IDEM OWM-1, i.e., the factors converting wasteload allocation concentrations to daily maximum and monthly average long-term average (LTA) concentrations. The procedures in the IDEM OWM-1 are very similar to those in the USEPA March 1991 TSD. The equations used to calculate these concentrations were as follows:

Chronic Daily Maximum	= Chronic WLA x 1.639	Eq. 7-5
Chronic Monthly Average	e = Chronic WLA x 0.706	Eq. 7-6
Acute Daily Maximum	= Acute WLA	Eq. 7-7
Acute Monthly Average	= Acute WLA x 0.430	Eq. 7-8

Typically the lower (or limiting) acute or chronic monthly average and daily maximum concentration values are used to calculate permit limits. However, in the case of the parameters in Table 7-3, there are no acute permit limit concentration values, therefore only chronic permit limit concentrations apply.

To conclude the WQBEL process, the WLA flow of 22.5 mgd was applied to the concentration permit limits to derive mass or load limits as follows:

This flow is the maximum monthly average flow for Outfall 001 over the past three years. It is also the flow used in the IDEM Wasteload Allocation, September 1992.

- 4) The mixing zone dispersion used in the calculation of WLA concentration values are obtained from the "Mixing Zone Demonstration" report included with the permit application.
- 5) Background concentrations used in the process are taken from the IDEM September 1992 WLA or data contained in the USEPA STORET data base.

DEVELOPMENT OF WQBELs

The translation of water quality criteria in Table 7-1 to WQBELs using the wasteload allocation process is shown in Table 7-3. Even though acute WLA concentration values and corresponding acute permit limits are not applicable to the parameters in Table 7-1, the equations are provided here for completeness.

To begin the process, the monthly average limits for Lake Michigan 6(j) parameters were converted to 4-day CCC values per the IDEM September 1992 WLA using the following equation:

4 Day CCC = Lake Michigan Monthly Average Concentration x 1.416 Eq.7-2

Chronic and acute wasteload allocation concentrations were then calculated using the April 1993 draft "Water Quality Guidance of the Great Lakes System Implementation Procedure Appendix F" mass balance methodologies for mixing zone dispersion. Based upon the results of a mixing zone demonstration using multiport diffuser modeling, as provided in Volume II of the permit application, a Total Mixing Zone dispersion (TMZ) of 77:1 was applied to the chronic wasteload allocation and a zone of discharged induced mixing (ZDIM) 54:1 was applied to acute wasteload allocations. For both chronic and acute applications, background WLA concentrations were incorporated. The equations used were as follows:

PROCEDURE FOR ESTABLISHING WOBELS

2 and Step 3.

A summary of the procedure for establishing WQBELs is as follows:

Step 1	Calculate acute and chronic wasteload allocation (WLA) concentration values:
Step 2	Calculate the monthly average and maximum daily limits based on acute WLA concentration values;
Step 3	Calculate the monthly average and maximum daily limits based on chronic WLA concentration values; and
Step 4	Set the lower set of permit limits based on comparing the results of Step

These steps are a combination of the procedures in IDEM's proposed "Technical Release OWM-1 Procedure for Developing Water Quality-based NPDES Permit Limitations for Toxic Pollutants," (IDEM OWM-1) and the USEPA "Technical Support Document for Water Quality-based Toxics Control," March 1991, (USEPA March 1991 TSD).

To apply this procedure to the Outfall 001 effluent, one must incorporate the following points:

- Based on the regulatory history and scientific basis of the Lake Michigan 6(j)standards, as discussed in Section 6.2, it is appropriate to apply these limits outside the Total Mixing Zone. Both the daily maximum and monthly average 6(j) standards are to be met at the edge of the Total Mixing Zone.
- 2) The monthly average limits for the Lake Michigan 6(j) parameters must be converted to 4-day continuous chronic criteria (CCC) values. This is in accordance with the IDEM "Wasteload Allocation of Grand Calumet River Indiana Harbor Ship Canal" (IDEM WLA), September 1992.
- 3) Since there are no limiting acute receiving water criteria (AAC values) for the 6(j) parameters, acute WLA concentration values cannot be calculated, thus the chronic WLA concentration values, derived from the CCC values in Step 2, are used to derive monthly average and daily maximum permit limits.

For lakes, the mass balance flow values are replaced by the volumetric dispersion derived from computer modeling or direct field measurement. For example, a 75:1 dispersion ratio means 1 part (volume) effluent is mixed with 75 parts (volumes) receiving water. For Eq 7-1:

$$Q_{PS} = 1$$

and,

$$Q_{RG} = 75 = DR$$
 (dispersion ratio)

therefore,

$$C_{WOS} \times (1 + DR) = (C_{PS} \times 1) + (C_{BG} \times DR)$$

The site-specific point source WLA representing the maximum effluent concentration that can be discharged without exceeding the C_{wos} is:

WLA =
$$C_{PS} = C_{WQS} \times (1 + DR) - (C_{BG} \times DR)$$
.

For Amoco Outfall 001, the mass balance variables are based on the following:

Cwos: Lake Michigan Water Quality Standards (see Table 7-1)

C_{BG}: IDEM WLA background Lake Michigan concentrations (see Table 7-1)

DR: Dispersion ratio projected from CORMIX2 (as described in Volume II)

In summary, the dispersion projections from the mixing zone demonstration are incorporated into the point source wasteload allocation to assure attainment of receiving water quality standards and designated uses. The WLA concentrations are subsequently utilized for WQBEL calculation procedures as detailed later in this section.

shows that additional assimilative capacity exists in the southern end of Lake Michigan since: i) concentrations levels are less than IWQS criteria, and ii) the designated use of Lake Michigan, as defined by IWQS criteria, is being attained (see Table 7-1). As a further example of long-term monitoring demonstrating available assimilative capacity, chloride monitoring data, presented as an annual average at the Whiting Intake from 1966 to 1992, is provided in Table 7-2. This data shows that Lake Michigan has been meeting its designated use as defined by the chloride IWQS criteria.

The specific source loadings that comprise a system's assimilative capacity are calculated from wasteload allocation procedures. A wasteload allocation (as per IDEM OWM-1) is the maximum effluent concentration of a constituent in a point source discharge which the receiving water can contain (assimilate) without endangering the achievement of water quality standards. A wasteload allocation is essentially an accounting procedure whereby source loads to a system are added together to examine the cumulative effect within the receiving water. This mass balance approach can be described mathematically for a single point source:

$$C_{WQS} \times (Q_{PS} + Q_{BG}) = (C_{PS} \times Q_{PS}) + (C_{BG} \times Q_{BG})$$
 Eq. 7-1

Where,

Cwos = Receiving water quality standard (concentration)

 Q_{PS} = Point source effluent flow

Q_{BG} = Background receiving water flow

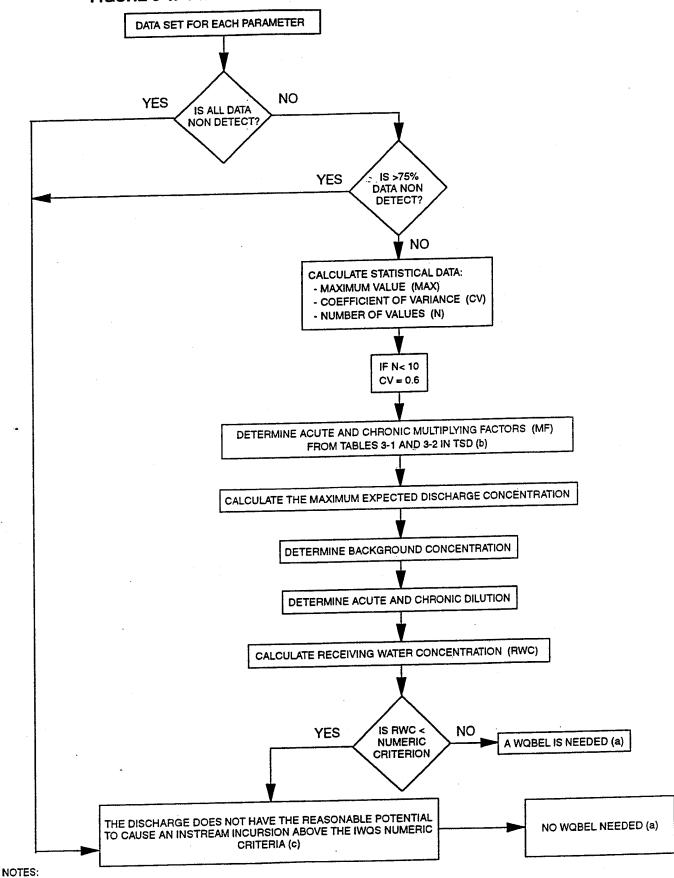
 C_{pq} = Point source effluent concentration

C_{BG} = Background receiving water concentration

SECTION 7

WATER QUALITY-BASED EFFLUENT LIMITS

In 327 IAC 2-1-6, IDEM has established water quality standards, including numerical criteria, for waterbodies of the state [327 IAC 2-1-6(a), Table 1], plus additional water quality standards specific to the Indiana Waters of Lake Michigan [327 IAC 2-1-6(j) and 2-1-6(b)(5)(C)(ii)]. Based on the results of the implementation of the projected effluent quality procedure in Section 6.3, the applicable numerical criteria for the Whiting Refinery Outfall 001 discharge are listed in Table 7-1. This listing includes the parameters for which the projected effluent quality exceeded the numeric criteria. For the five parameters listed in Table 7-1, it is the Lake Michigan "6(j)" Standards that control the possible permit limits since they are either the only numeric criteria or the lowest criterion for each parameter.


WASTELOAD ALLOCATION FOR LAKE MICHIGAN

WQBELs are derived by determining the assimilative capacity of the receiving water body using wasteload allocation techniques. Assimilative capacity refers to the total amount or loading of a constituent that a receiving water body may contain without exceeding a water quality standard applicable to the designated use. The assimilative capacity is comprised of loads from natural "background" sources, non-point source contributions, and point source contributions. A water body is described as "having assimilative capacity" if specific loads (point or non-point) may be introduced or added to the system without causing the receiving water concentrations to be greater than the water quality standards.

The assimilative capacity of a system can be determined mathematically and/or through long-term monitoring. Long-term monitoring of background concentrations of constituents present in the south end of Lake Michigan and subject to Indiana water quality standards

•

FIGURE 6-1. PROCEDURE FOR DETERMING THE NEED FOR A WQBEL

(a) WQBEL - Water Quality Based Effluent Limit

(c) IWQS - Indiana Water Quality Standard

⁽b) TSD - Technical Support Document for Water Quality-Based Toxics Control, U.S. EPA March 1991

TABLE 6-3. OUTFALL 001 AND WLA BIOCHEMICAL OXYGEN DEMAND (BOD) DATA

PARAMETER	MAXIMUM DAILY	MAXIMUM	MAXIMUM MONT	HLY AVERAGE
	CONCENTRATION (mg/L)	LOAD (lbs/day)	CONCENTRATION (mg/L)	LOAD (ibs/day)
Outfall 001 Historical Performance for TBOD (a,b)	29.0	3,580	5.8	721
Wasteload Allocation CBOD for Model Segment 48 (c)	44.34	8,322.0	22.17	4,161.0

NOTES:

- (a) Source is the maximum data reported in Form 2c of the permit application.
- (b) Concentrations and loads are independent of each other, i.e., do not necessarily occur on the same date.
- (c) Source is the "Wasteload Allocation of Grand Calumet River Indiana Ship Canal," September, 1992.

			•		
				•	
					•
•					
. •					
				4	
		•			
					•
				•	
•					
			:		•
	•				
·					
				-	
	· ·				
•					
	•				
			. "		
		•			

_
9
3
WOBEL
2
5
NEED
ш
Ξ
6
z
5
Z
፮
DETER
8-2
ŭ
3

PARAMETER	SLIND	NUMBER OF SAMPLES	PERCENT NON DETECTS	MAXIMUM	COEFFICIENT OF VARIATION (B)	ACUTE PEASONABLE POTENTIAL MULTIPLYING FACTOR (c)	CHEONIC REASONABLE POTENTIAL MALTIPLYING FACTOR (c)	ACUTE MAXIMUM EXPECTED EFFLUENT CONCENTIVATION	CHEONIC MAXIMUM EXPECTED EFFLUENT CONCENTRATION	BACKGROUND	ACUTE RECENING WATER CONCENTRATION	CHEONIC RECENING WATER CONCENTRATION	IS AN ACUTE WQBEL NEEDED ?	IS A CHRONIC WOBEL NEEDED 7
OTHER SUBSTANCES Asbesto Chloride Chlorine (Total Residual) Chlorine (Total Peridual) Cyanide (Total) Nintae-N - Nariae-N Narine-N	fibers/liter mg/L mg/L mg/L mg/L mg/L mg/L mg/L	284	0 00 0 38	0.000	0.288	3 8 8	12			900 900000 9000000000000000000000000000	20.11	87.21 87.21 17.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 5 6 6 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Sulfates Total Phosphorous Flarable Solids (h) Fluorides Dissolved fron Ammonle as N (summer) (u)	7/64 4/67 2/64 2/64 2/64 2/64 2/64 2/64 2/64 2/64	0 B 0 - 4 D	00000	361 0.530 1.239 0.3 120 13	000000	4 0 8 6 7 4 8 7 8 8	2.3 1.6 1.6 6.2 2.0	1,600 2,01 3,965 3,965 3,965 8,84	876 1.11 2,230 1.36 26	25.0 20.03 170.0 @ 0.1 © 0.01 @ 0.01 @	(a (35.01 0.04 1.064 0.12		
IOXICITY Chronic Toxicity for Fathead Minnow Chronic Toxicity for Ceriodaphnia dubia	TUc (%)	7 8	ĒĒ	Ď 60	0.0		1.0		32 15.2	88		0.4		(S)

NOTES:

(a) Assuming the following dispersion
Zone of Discharge Induced Mixing =
Total Mixing Zone =

)

• **-**

TABLE 6-2. DETERMINATION OF THE NEED FOR A WOBEL (4, ab)

IS A CHRONIC WOBEL NEEDED?	88688 88868 2222 222222	\$6\$6\$	\$ \$2\$222222	33
IS AN ACUTE WQBEL NEEDED ?	222222 2222	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3 300000000000000000000000000000000000	222 222222222222222222222222222222222
CHEONIC RECEINING WATER CONCENTRATION				
ACUTE RECEIVING WATER CONCENTRATION				
BACKGROUND				
CHRONIC MAXIMUM EAPECTED EFFLUENT CONCENTRATION				
ACUTE MAXMUM EMPECIED EFFLUENT CONCENTRATION			10 10	
CHRONIC PEASONABLE POTENTIAL MULTIPLYNG FACTOR (c)				
ACUTE REASONABLE POTENTIAL MULTIPLYING FACTOR (c)				
COEFFICIENT OF VARIATION (b)				
VALUE				
PERCENT NON DETECTS	60 61 62 63 63 63 63 63 63 63 63	9.5 80.1	5 6 6 7	36 8 8 8 8 8 8 8
NUMBER OF SAMPLES				
CANTIS	464 464 464 464 464 464 464	484 484 484 484 484 484 484 484 484 484	764 764 764 764 764	44444444444444444444444444444444444444
PARAMETER	Dieldrin 2.4-dinitotoluene 2.4-dinitotoluene Dioxin (2.3.7.8-TCDD) 1.2-diphenythydrazne Endsaultan Endsaultan Ethylenzene Fluoranthene Hadromethanes Helpachtor	alpha HCH beta HCH gamma HCH (Ludane) I echnical HCH Hexachlorocyclopertadene Stopborone Nitrobenzene Xitabilitation-co-cresol	Dintrophenol Nitrosambers N-introsodiethylamine N-introsodiethylamine N-introsodipholylamine N-introsodipholylamine N-introsodipholylamine Parathion Pentachloophenol Pentachloophenol	Directory physical Directory Direc

. -

~
OBEL (a, ab
FOR A W
F THE NEED
DETERMINATION O
TABLE 6-2

토씨는 그		€	33	SE	∋Ê	0	26	∋©	EE0		ε	6	3E	≘ε	ε	8	<u> </u>	Ξ	8	€€	<u> </u>	3	8 8		33	Eε	3	9	}∈;	<u> </u>
IS A CHRONIC WOBEL NEEDED ?		1			_				222		1		2 2 3				22				22		22				2 2			
NE GO		8	33	96	93	Ē:	:e	36	eeî		ε	€6	E @ G	Be	:E	3	<u> </u>	€	€	€6	<u>.</u>	 E	€€	•	33	e e	<u> </u>	<u> </u>	3€	£ @
IS AN ACUTE WQBEL NEEDED?		2:	22	2	22	2 2	22	2 2	222		ž	22	2 2 2	ž ž	Š	₽:	22	Š	ž	2 2	2 2	2	2 2	1	2 2	2 2	2 2	2 2	Ž.	² ²
C FG TTON						2. c	3	1.47	15.59																					
CHRONIC RECEIVING WATER INCENTRATK																														
CHRONIC RECEMING WATER CONCENTRATION																														
ACUTE RECENING WATER CONCENTRATION					10.1	4.02		2.95	26.26																					
ACUTE RECEIVING WATER INCENTRATE	ĺ																													
34 ON																														
VITION						9	3388	5 (1)	31 (Q)																					
BACKGROUND						1.085		Ö	8.81															0000000						
CONC										1														0.000.000.00						
OZGE					9.6	202		78.5	538	7					-									************						
CHRONIC MAXIMUM EUPECTED EFFLUENT NICENTRATIC																								20000000						
CHRONIC MAXIMUM EXPECTED EFFLUENT CONCENTRATION																								***************************************						
	1			•••	19.	4.00		135	98 86	-				-	-			-			••••	-		80000					••••	
ACUTE MAXIMUM EDPECTED EFFLUENT NCENTRATIC																								500000000						
ACUTE MAXIMUM EXPECTED EFFLUENT CONCENTRATION																								W.6000000						
	-				-	9.0		1.7	2.0	+					-			-					••••	-				••••		
CHRONIC PEASONABLE POTENTIAL NULTIPLYING FACTOR (c)																								20000000						
PEAS FACT																								200000000						
G TREE					53	80 E		3.0	3.6						-			-		****	••••			200000						
ACUTE PEASONABLE POTENTIAL MIALTIPLYING FACTOR (c)																								20000000						
F. F. F.	-				<u>8</u>	9.0		9.4	0.6	-														-						
FICEN WRATIO					9	00		0	0																					
OF VARIATIV																								00000000						
ANDRE CE					7	8 5		45	569												••••						•	••••	••••	
VALUE																								***************************************						
PERCENT NON DETECTS		88		5 8	80	8 =	8 8	30	880	7.	5	<u>\$</u> §	88	38	8			<u>\$</u>	8	8 8	5	3	8	8	<u>§</u>	<u>8</u> 8		•	8	<u>\$</u>
	$\left \cdot \right $			* ~ .	v		· ·											_												
NUMBER OF SAUPLES		7.			5 5	⇔ Œ	10.1	. ₽ .	440		_				-			-	-			-	-	•					-	-
	+		<u> </u>							-					_									-						
SUM		194	4	4 4	44	197 197	4	Ę.	444		ηβη	ار ار	4	184	μg/L	767	48	119/L	49/L	4 4 4	18 to	9	484 484	į	3 4	767	764 764	1/B/1		19/2
															_					_										
																	•													
WETER															_		1,2,4,5-Tetrachlorobenzene Pentachlorobenzene			2 9	thane		중 중	Moroalkyl Ethers his/3_chloroleography ather		Ē				
PARAMETER					€ © €									hloride	e de la companie de l	enzene	achioro. enzene	Shzene	athane	roethan oethan	chloroe	enols	opherk opherk	1813	Tryl et	ethy!) e		8 E	hylene	or ser
	METALS (d)	Artimony Americ (III)	<u> </u>	Cadmium (e)	Chromium (III) (e) (t) Chromium(VI) (f)	Copper (a)	وَجٍ ﴿	ĒĒ	€ E ~	ORGANICS	_	Acrytonitrile Aldrin	9 ?	Den zignine Carbon Tetrachloride	Chlordene Chtornated Benzenes	Monochlorobenzene	1,2,4,5-Tetrachlorot Pentachtorobenzene	Hexachlorobenzene Chlorinated Ethanes	1.2 - dichloroethane	1,1,1 -trichloroethane 1,1,2 -trichloroethane	1,1,2,2~tetrachloroethane	Chlorinated Phenois	2,4,5 - trichtorophenois 2,4,6 - trichtorophenois	Chloroalkyl Ethers	bis (chloromethyr) ether	bis(2-chloroethyi) ether Chloroform	Chloropyrifos DDT	Dichlorobenzenes Orchlorobenzidine	1,1 - dichloroethylene	z,4 - akniorophenol Dichloropropenes
	₹	2	Barium	Cadmium	Ę	Copper (Mercury	Selenium	Silver (e) Thailtium Zinc (e)	ZQ.	Acrolein	Acryton Aldrin	Benzene	5	Chlordene	ě	2,4. entac	exac	2-d	-, 4	1,2,2 evac		4. 4. 6. 6.	oros	S.	orok	Chlorop DDT	hlore	g -	Jorc Jorc

١ . . • .

PARAMETER	UNITS	AAC (a,b) (Maximum)	ccc	(4-Day Average	LAKE MICHIGAN STANDARDS (c)					
			Outside of Mi	xing Zone	Point of Water Intake	Monthly Average	Daily Maximum			
		- - - - - - - -	Aquatic Life (CAC)	Human Health	Human Health	_				
Hexachlorocyclopentadiene	μg/L				206					
Isophorone	μg/L	į	1	520,000	5,200					
Nitrobenzene	μg/L		-		19,800					
Nitrophenols										
2,4-dinitro-o-cresol	μg/L		1	765	13.4					
Dinitrophenol	μg/L			14,300	70					
Nitrosamines			İ							
N-nitrosodiethylamine	μg/L	1	l	12.4	0.008					
N-nitrosodimethylamine	μg/L	1		160	0.014	İ				
N-nitrosodibutylamine	μg/L	ĺ		5.9	0.064	İ				
N-nitrosodiphenylamine	μg/L			161	49					
N-nitrosopyrrolidine	μg/L			919	0.16	!				
Parathion	μg/L	0.065	0.013							
Pentachiorophenol	μg/L	Į.			1,000					
Phenol	μg/L		ŀ		3,500					
Phthalate Esters					242.22	ļ				
Dimethyl phthalate	μg/L	ł		2,900,000	313,000					
Diethyl phthalate	μg/L			1,800,000	350,000					
Dibutyl phthalate	μg/L			154,000	34,000					
Di-2-ethylhexyl phthalate	μg/L			50,000	15,000					
Polychlorinated Biphenyls (PCBs)	μg/L.		0.014	0.00079	0.00079					
Carcinogenic Polynuclear Aromatic	μg/L		1							
Hydrocarbons (PAHs)	μg/L	j		0.31	0.028					
Tertrachloroethylene	μg/L			88.5	8					
Toluene	μg/L			424,000	14,300					
Toxaphene	μg/L	0.73	0.0002	0.0073	0.0071					
Trichloroethylene	μg/L			807	27					
Vinyi Chloride	μg/L			5246	. 20					
OTHER SUBSTANCES							<u></u>			
Asbestos	fibers/liter				300,000					
Chlorides	mg/L	860	230			15				
Chlorine (Total Residual)	μg/L	19	11							
Chlorine (g)	mg/L	0.2	1							
Cyanide (Total)	μg/L	22	5.2		200					
Nitrate – N – Nitrite – N	mg/L		}		10	j				
Nitrite—N	mg/L				1.0					
Dissolved Oxygen	mg/L	i	l		1	7.0				
pH	8.U.						7.5-8			
Phenois	mg/L	j				0.001	0.0			
Sulfates	mg/L		250 (h)			26				
Total Phosphorous	mg/L	1				. 0.03	0.			
Filtrable Solids (i)	mg/L		750 (h)			172	. 2			
Fluorides	mg/L		2.0 (h)							
Dissolved Iron	μg/L		1	j			3			
Ammonia as N (k)	mg/L]						
- Summer (I)	mg/L		1			0.23	0.			
						1.24	2			

NOTES

- (a) 327 IAC 2-1-6(a) Table 1, unless otherwise noted.
- (b) AAC Acute Aquatic Criterion
 - CCC Continuous Criterion Concentration
 - CAC Chronic Aquatic Criterion
- (c) 327 IAC 2-1-6(j).
- (d) Acid soluble, except as indicated.
- (e) Lake Michigan Hardness = 142 mg/L.
- (f) Dissolved.
- (g) Intermittent total residual.
- (h) Limit included in notes following Table 1.
- (i) Filtrable or dissolved solids.
- (i) Chromium (iii) is the same as total chromium.
- (k) Monthly average unionized ammonia standard is converted to total ammonia as N at given pH and temperature conditions.

 Temperature and pH values are the 75 percentile values for Lake Michigan as used in the IDEM Wasteload Allocation, September 1992.

 Daily maximum equals twice the monthly average concentration as per OWM-1.
- (I) At pH 8.2 and 22.9°C for July through September. See note (k).
- (m) At pH 8.0 and 6 °C for October through June. See note (k).

PARAMETER	UNITS	AAC (a,b) (Maximum)	ccc	(4-Day Average	LAKE MICHIGAN STANDARDS (c)				
	·		Outside of Mi	ixing Zone	Point of Water Intake	Monthly Average	Daily Maximum		
			Aquatic Life (CAC)	Human Health	Human Health	_			
METALS (d)							<u> </u>		
Antimony	μg/L			45,000	146				
Arsenic (III)	μg/L	360	190	0.175	0.022				
Barium	1 1	300	100	0.175	1,000				
— ··	μg/L		1		0.068				
Beryllium	μg/L		4.40	1.17					
Cadmium (e)	μg/L	5.83	1.49		10		ľ		
Chromium (III) (e) (j)	μg/L	2,314.2	275.8	3,433,000	170,000				
Chromium(VI)	μg/L	16 (f)	11		50				
Copper (e)	μg/L	24.66	15.95						
Lead (e)	μg/L	127.58	4.97		50	•	İ		
Mercury	μg/L	2.4	0.012	0.15	0.14				
Nickel (e)	μg/L	1,908.0	212.1	100	13.4				
Selenium	μg/L	130	35		10				
Silver (e)	μg/L	3.71		1	50		1		
Thalium	μg/L			48	13				
Zinc (e)	μg/L	157.51	142.7	ĺ	ŀ		1		
ORGANICS		<u>.</u> l.					<u> </u>		
						`	T		
Acrolein	μg/L			780	320		1		
Acrylonitrile	μg/L			6.5	0.58				
Aldrin	μg/L	1.5		0.00079	0.00074				
Benzene	μg/L		i	400	6.6				
Benzidine	μg/L			0.0053	0.0012				
Carbon Tetrachloride	μg/L		j	69.4	4.0				
Chlordane	μg/L	1.2	0.0043	0.0048	0.0046				
Chlorinated Benzenes									
Monochlorobenzene	μg/L		İ		488				
1,2,4,5≏Tetrachlorobenzene	μg/L	. 1		48	38				
Pentachiorobenzene	μg/L	,		85	74				
Hexachlorbenzene	μg/L			0.0074	0.0072		ł		
Chlorinated Ethanes			1	0.007.4					
1.2-dichloroethane	μg/L	ļ		2430	9.4				
1,1,1 - trichloroethane	μg/L			1,030,000	18,400				
1,1,2-trichloroethane	1			418	6				
1,1,2,2—tetrachioroethane	μg/L			107	1.7				
	μg/L		1						
Hexachloroethane	μg/L			87.4	19				
Chlorinated Phenois				•					
2,4,5-trichlorophenol	μg/L	İ			2600				
2,4,6—trichlorophenol	μg/L			35	12				
Chloroalkyl Ethers			1						
bis(2-chloroisopropyl) ether	μg/L			4360	34.7				
bis(chloromethyl) ether	μg/L		l	0.018	0.000038				
bis(2-chloroethyl) ether	μg/L			13.6	0.3				
Chloroform	μg/L			157	1.9				
Chloropyrifos	μg/L	0.083	0.041	1					
DDT	μg/L	0.55	0.001	0.00024	0.00024				
Dichlorobenzenes	μg/L	1	1	2,600	400				
Dichlorobenzidine	μg/L	Ī		0.2	0.1				
1,1 - dichloroethylene	μg/L	ļ	1	18.5	0.33				
2,4 - dichlorophenol	μg/L				3,090				
Dichloropropenes	μg/L			14,100	87				
Dieldrin	μg/L	1.3	0.0019	0.00076	0.00071				
2,4—dinitrotoluene	μg/L		3.0018	91	1.1				
Dioxin (2,3,7,8~TCDD)	μg/L			0.0000001	0.0000001				
1,2—diphenylhydrazine	μg/L			5.6	0.000001				
i,2—dipnenyinydrazine Endosulfan		0.11	0.056	159	74				
endosusan Endrin -	μg/L	0.09	0.0023	108	1.0				
	μg/L	0.00	0.0023		ı				
Ethylbenzene	μg/L		1	3,280	1,400				
Fluoranthene	μg/L		1	54	42				
Halomethanes	μg/L			157	1.9				
Heptachlor	μg/L	0.26	0.0038	0.0028	0.0028				
1exachlorobutadiene	μg/L		1	500	4.47	4			
Hexachlorocyclohexane (HCH)		1		l					
alpha HCH	μg/L		1	0.31	0.09				
beta HCH	μg/L		İ	0.55	0.16				
gamma HCH	μg/L	·	İ						
(Lindane)	μg/L	1.0	0.08	0.63	0.19				
Technical HCH	μg/L			0.41	0.12				